Tetrakis-(2,4,6-trimethoxyphenyl)dichromium. A Homologous New Compound with an Exceedingly Short Bond

F. A. COTTON and M. MILLAR

Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA

Received October 7, 1977

We recently described the discovery and characterization of a compound, tetrakis-(2,6-dimethoxyphenyl)dichromium, Cr₂(DMP)₄, containing by far the shortest metal-to-metal bond, 1.847(1) Å known [1]. This is, in fact, the shortest of all homonuclear bonds in proportion to the size of the atoms involved as gauged by the Pauling R_1 radii. We considered it important to investigate the homogolous compound, $Cr_2[2,4,6-(MeO)_3C_6H_2]_4$, $Cr_2(TMP)_4$, for several reasons. One was simply to show the generality of the previous result provided that the essential 2,6-dimethoxyphenyl unit is present, and another was to see if the Cr-Cr bond would show sensitivity to a marked change in the π inductive character of the ligand. The 2,4,6-trimethoxyphenyl group is uniquely suited for this because (a) all ring positions available for lithiation are equivalent so that only one $(MeO)_3C_6H_2Li$ reagent can be formed, and (b) in the para position H is replaced by MeO which has fairly large negative σ_p and σ_p^+ values [2].

The 2,4,6-trimethoxyphenyl lithium reagent was prepared as described in the literature [3]. $Cr_2(TMP)_4$ was prepared in essentially the same way as $Cr_2(DMP)_4$ and has comparable physical and chemical properties.

It crystallizes in the monoclinic space group P2₁/n with Z = 2 and the following cell dimensions: a = 11.075(3) Å, b = 14.279(3) Å, c = 11.748(2) Å, $\beta = 91.07(2)^\circ$, V = 1857.6(7) Å³.

Data were collected using MoK α radiation on a Syntex PI diffractometer. All computations were done on the PDP 11/45 computer at the Molecular Structure Corporation, College Station, Texas, using the Enraf-Nonius Structure determination package of Frenz and Okaya.

The structure was refined using those 1698 reflections in the range $0^{\circ} < 2\theta \le 45^{\circ}$ for which $I > 3\sigma(I)$. The coordinates of the chromium atoms were located from a three dimensional Patterson map. A difference Fourier map revealed the positions of all the remaining non-hydrogen atoms. Final anisotropic refinement of all atoms excluding the methoxy

Fig. 1. An ORTEP view of $Cr_2(TMP)_4$. Each atom is represented by its ellipsoid of thermal vibration scaled to enclose 50% of the electron density.

TABLE I. Some Important Bond Lengths (Å) and Angles (Deg) in $Cr_2(TMP)_4$.

Cr-Cr Cr-C Cr-O	1.849(2) ^a 2.061 ± 0.006 ^b 2.128 ± 0.001	$\begin{array}{c} Cr - Cr - C \\ Cr - Cr - 0 \\ Cr - Cr - C \\ C - Cr - 0 \\ C - Cr - 0 \\ C - Cr - 0 \\ 0 - Cr - 0 \end{array}$	$91.0 \pm 0.$ $101.8 \pm 0.$ 93.1(2) $166.2 \pm 0.$ $91.2 \pm 1.$ 81.8(2)
		C-Cr-0 C-Cr-0 0-Cr-0	166.2 ± 91.2 ± 81.8(2

^aParentheses enclose esd's for unique parameters. ^DError intervals are mean deviations from the mean obtained by averaging over several crystallographically independent values.

carbon atoms gave residuals of $R_1 = 0.066$ and $R_2 = 0.091$.

The structure is shown in Figure 1; some pertinent bond distances are listed in Table I. The centrosymmetric $Cr_2(TMP)_4$ dimer is structurally similar to the $Cr_2(DMP)_4$ complex. While the only crystallographic element of symmetry is the center of inversion at the midpoint of the Cr-Cr bond, the molecule has symmetry approximating very closely to $C_{2h}(2/m)$. The Cr-Cr distance of 1.849(2) in Cr(TMP)₄

The Cr-Cr distance of 1.849(2) in Cr(TMP)₄ does not differ significantly from the corresponding distance in Cr₂(DMP)₄. This very short Cr-Cr distance is apparently unaffected by the change in the phenyl substituents. This result contrasts with the substantial variation in Cr-Cr distance observed in several $Cr_2(O_2CR)_4$ with R = H, CH_3 , CF_3 [4].

The structure reported here confirms the existence of very short Cr-Cr quadruple bonds. The structural and electronic factors associated with and responsible for these exceedingly short metal-metal bonds are under active investigation.

References

- F. A. Cotton, S. Koch and M. Millar, J. Am. Chem. Soc., 99, (1977) in press.
 Cf. J. March, "Advanced Organic Chemistry", 2nd Edn.,
- 2 Cf. J. March, "Advanced Organic Chemistry", 2nd Edn., McGraw-Hill (1977) page 253 for a compilation.
- 3 G. Von Koten, A. J. Leusink and J. G. Noltes, J. Organometal. Chem., 85, 105 (1975).
- 4 F. A. Cotton, M. Extine and G. W. Rice, *Inorg. Chem.*, in press.